13C longitudinal relaxation time measurements and DFT-GIAO NMR computations for two ammonium ions of a tetraazamacrocyclic scorpiand system

نویسنده

  • Ryszard B. Nazarski
چکیده

ABSTRACT Spin-lattice relaxation times, T1s, for 13C nuclei in two cations H n1n+ (n = 1, 5) of N-(2-aminoethyl)-cyclam (1, scorpiand) were determined by means of 13C{1H} NMR experiments in aqueous solution at pH 11.5 and 0.2. The theoretical study [modeling with OPLS-AA, B3LYP/6-31G(d) geometry optimizations, dispersion-corrected energies (DFT-D3), and DFT-GIAO predictions of the NMR chemical shifts (including an IEF-PCM simulation of hydration)] was also done for several conformers of the tautomer iso-H414+ not investigated before. The binding directions in protonated polyamino receptors necessary for efficient complexation of the nitrate anion(s) were briefly outlined, as well. All these results were discussed in terms of 'abnormal' 13C chemical shift changes found previously for the side-chain carbons of amine 1 in strongly acidic solution (HNO3). In conclusion, an earlier proposal of its association with NO3- at pH <1 was rejected. Instead, the participation of small amounts of a micro-species iso-H414+Dhydr under such conditions can be proposed. GRAPHICAL ABSTRACT A small contribution of iso-H414+Dhydr (see figure) to an ionic mixture of pentamine 1 was proposed to explain the 'abnormal' 13C NMR shifts observed for atoms C11 and C12 in its side-chain arm, at pH <1.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A theoretical (DFT, GIAO-NMR, NICS) study of the carbocations and oxidation dications from azulenes, homoazulene, benzazulenes, benzohomoazulenes, and the isomeric azulenoazulenes.

Protonation of parent azulene (1), homoazulene (8), representative isomeric benzazulenes (9, 9A, and 9B), and benzohomoazulenes (10, 10A, and 10B) as well as the mono- and diprotonation of isomeric azulenoazulenes (11-16) were studied by DFT at the B3LYP/6-31G(d) level. The most likely carbocations were identified based on relative protonation energies. For comparison, complete experimental 13C...

متن کامل

Calculation of 13C chemical shifts in rna nucleosides: structure-13C chemical shift relationships.

Isotropic 13C chemical shifts of the ribose sugar in model RNA nucleosides are calculated using SCF and DFT-GIAO ab initio methods for different combinations of ribose sugar pucker, exocyclic torsion angle, and glycosidic torsion angle. Idealized conformations were obtained using structures that were fully optimized by ab initio DFT methods starting with averaged parameters from a collection of...

متن کامل

Study of cyclic quaternary ammonium bromides by B3LYP calculations, NMR and FTIR spectroscopies.

N,N-dioctyl-azepanium, -piperidinium and -pyrrolidinium bromides 1-3, have been obtained and characterized by FTIR and NMR spectroscopy. DFT calculations have also been carried out. The optimized bond lengths, bond angles and torsion angles calculated by B3LYP/6-31G(d,p) approach have been presented. Both FTIR and Raman spectra of 1-3 are consistent with the calculated structures in the gas pha...

متن کامل

Quantum Chemical Modeling of N-(2-benzoylphenyl)oxalamate: Geometry Optimization, NMR, FMO, MEP and NBO Analysis Based on DFT Calculations

In the present work, the quantum theoretical calculations of the molecular structure of the (N-(2-benzoylphenyl) oxalamate has been investigated and are evaluated using Density Functional Theory (DFT). The geometry of the title compound was optimized by B3LYP method with 6-311+G(d) basis set. The theoretical 1H and 13C NMR chemical shift (GIAO method) values of the title compound are calculated...

متن کامل

Quantum Chemical Modeling of 1-(1, 3-Benzothiazol-2-yl)-3-(thiophene-5-carbonyl) thiourea: Molecular structure, NMR, FMO, MEP and NBO analysis based on DFT calculations

In the present work, the quantum theoretical calculations of the molecular structure of the 1-(1, 3-Benzothiazol-2-yl)-3-(thiophene-5-carbonyl) thiourea has been predicted and are evaluated using Density Functional Theory (DFT) in gas phase. The geometry of the title compound was optimized by B3LYP/6-311+G and B3LYP/6-311+G* methods and the experimental geometrical parameters of the title compo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 78  شماره 

صفحات  -

تاریخ انتشار 2014